Tuesday, 4 October 2011

Pascal Triangle: Can you explain the following result?




Row 0 : 1
Row 1 : 1    1
Row 2 : 1    2    1
Row 3 : 1    3    3    1
Row 4 : 1    4    6    4    1

Etc.


Take a row of Pascal's Triangle.
Write a second copy of the row below it and place 0.
Multiply each pair of numbers and
then sum these products.


For example,

1    1    0
0    1    1
----------------
0    2    0
0 + 2 + 0 = 2 (it is in row 2)

1    2    1    0
0    1    2    1
-------------
0    2    2    0
0 + 2 + 2 + 0 = 4 (in row 4)

1    3    3    1    0
0    1    3    3    1
----------------------
0    3    9    3    0
0 + 3 + 9 + 3 + 0 = 15 (in row 6)

1     4     6     4     1     0
0     1     4     6     4     1
-----------------------------
0    4    24    24    4    0
0 + 4 + 24 + 24 + 4 + 0 = 56 (in row 8)

etc.

1 comment:

  1. We want to prove that
    sum (k=0 to n-1) C(n,k)*C(n,k+1) = C(2n,n-1).

    This statement has a combinatorial proof.
    C(2n,n-1) is the number of subsets of {1,...,2n} that have exactly (n-1) elements. To choose such a subset, we may select k of the first n elements {1,...,n}, and delete k+1 of the last n elements {n+1,...,2n}. We obtain all (n-1)-subsets as k ranges from 0 to n-1.

    ReplyDelete